skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piña, A R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As part of an effort to examine students’ mathematical sensemaking (MSM) in a spins-first quantum mechanics course during the transition from discrete (spin) to continuous (position) systems, students were asked to construct an eigenvalue equation for a one-dimensional position operator. A subset of responses took the general form of an eigenvalue equation written in Dirac notation. Symbolic blending, a combination of symbolic forms and conceptual blending, as well as a categorical framework for MSM, were used in the analysis. The data suggest two different symbolic forms for an eigenvalue equation that share a symbol template but have distinct conceptual schemata: A transformation that reproduces the original and to operate is to act. These symbolic forms, when blended with two sets of contextual knowledge, form the basis of three different interpretations of eigenvalue equations modeled here as conceptual blends. The analysis in this study serves as a novel example of, and preliminary evidence for, student engagement in sensemaking activities in the transition from discrete to continuous systems in a spins-first quantum mechanics course. 
    more » « less